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Abstract
We compute the second-order roughness correction to the Casimir energy for
two parallel metallic plates. We compare the proximity force and scattering
approaches, showing that the former is obtained analytically in the limit of
very smooth surfaces by neglecting non-specular reflections. We calculate the
discrepancy between the two approaches for some typical numerical examples.

PACS numbers: 42.50.−p, 03.70.+k, 68.35.Ct

1. Introduction

The Casimir force between metallic plates has been measured with increasing experimental
precision over the last 10 years [1]. Besides the intrinsic relevance of the Casimir effect, one
important motivation is the search for non-Newtonian forces on the scale of a few hundred
nanometres. The Casimir effect provides the dominant contribution to the force between
metallic plates for separation distances in this range. Thus, in order to derive bounds for
non-Newtonian forces from the experimental values, it is essential to compare them with an
accurate theoretical model for the Casimir effect, taking into account all possible corrections
to the ideal model considered by Casimir [2].

Two effects provide the dominant correction at separation distances of a few hundred
nanometres: the finite conductivity of the metallic plates and the roughness of their surfaces.
These two effects are not independent, and it would be pointless to calculate them separately
and multiply the corresponding corrections. Moreover, the finite conductivity effect is not
a small perturbation on the scale of a few hundred nanometres. Therefore, the roughness
effect must be computed within a full finite-conductivity model for the metallic medium. We
have recently presented the results of such a calculation [3, 4], taking the plasma model to
describe the optical properties of the plates and considering the roughness effect to be a small
perturbation.

In this paper, we discuss the physical meaning of the results for the roughness correction
in different situations. We start by considering the approach based on the proximity force
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Figure 1. Parallel plates and detail of the internal surface of plate 1.

approximation (PFA). Then, we show how a more general result can be derived with the help
of the scattering approach, in which the metallic plates are described by transfer operators.
The resulting expression for the second-order correction is explained in terms of closed-loop
diagrams involving non-specular reflections and polarization mixing. Finally, we present a
second derivation of the PFA result, this time as a limiting case of the correction obtained in
the scattering approach. This derivation explicitly shows that the PFA is equivalent, in the
context of roughness, to neglecting the contribution of non-specular reflections.

2. Model

We consider two parallel rough metallic plates perpendicular to the z-axis, as shown in figure 1.
The inner surface of plate j, with j = 1, 2 denoting each plate, is described by the profile
function hj (r), where r = (x, y) collects the transverse coordinates. These functions define
the local heights with respect to reference planes at z = 0 and z = L and have zero spatial
averages: 〈hj (r)〉 = 0. Hence, L represents the average separation distance. Both h1 and h2

are counted as positive when they correspond to local length decreases below the average L
(as shown in figure 1, h1 is positive along the positive z-axis, whereas h2 is positive in the
opposite direction). The profile functions are not prescribed or known experimentally; only
some statistical information is available. The typical length scale for the variations of h1 and
h2 along the xy-plane is the correlation length �C.

We make the following assumptions:

• The amplitude of roughness is very small compared to the average separation L:

|hj (r)| � L, j = 1, 2. (1)

This is the case in most Casimir experiments, where the amplitude is in the nanometre
range, whereas L is of the order of a hundred nanometres or above.

• The slope of the surface profile is small:

|∇hj (r)| � 1, j = 1, 2. (2)

In terms of the correlation length �C, this condition reads |hj (r)| � �C. Although �C is
not actually known in the experiments (see the discussion in the last section), one usually
surmises that it is of the order of a few hundred nanometres. Equations (1) and (2) jointly
allow us to consider the roughness as a small perturbation. They imply that the roughness
amplitude is the smallest length scale in the problem. Accordingly, we compute the
energy correction up to second order in h1 and h2.

• The plates are large enough to contain many correlation areas: A � �2
C, where A is

the area of the plates. Thus, they contain many statistically independent realizations of
roughness profiles, as if the entire statistical ensemble were included in a single plate.
Thanks to this assumption, we may identify spatial and statistical averages.
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Figure 2. Roughness correction in the proximity force approximation.

• The two surfaces are statistically independent, so that the cross-correlation function
vanishes:

〈h1(r)h2(r′)〉 = 0. (3)

• Translational symmetry holds on the xy-plane. Hence, the self-correlation functions
satisfy

〈hj (r)hj (r′)〉 = 〈hj (r − r′)hj (0)〉, j = 1, 2. (4)

From this condition, it follows that the Fourier transforms Hj(k) (k is a two-dimensional
vector) satisfy

〈Hj(k)Hj (k′)〉 = (2π)2δ(2)(k + k′)σj (k), j = 1, 2, (5)

where σj (k), the roughness spectrum for plate j, is the Fourier transform of 〈hj (r)hj (0)〉.

3. Proximity force approximation

If, in addition to the assumptions listed above, we also assume that the correlation length �C

is much larger than the mean separation distance L, then one may easily derive the roughness
correction by taking the proximity force approximation [5].

With L � �C, the surfaces are nearly flat over long distances (as compared to the
separation). As a consequence, we may divide them into flat sections, with each section still
much larger than L, as indicated in figure 2. The energy for each section is then given by the
standard parallel-planes result for very large plates (since the slope of the surface profiles is
very small). Although the Casimir energy is not additive, we may obtain an approximation
for the total energy by adding the individual contributions of all sections:

E =
∫

ePP (L − h1(r) − h2(r)) dx dy, (6)

where the integral is over the entire plate and ePP(z) = EPP(z)/A is the Casimir energy per
unit area for parallel planes separated by a distance z.

The interpretation of equation (6) goes as follows: the Casimir energy in the PFA is
obtained from the parallel-planes result by simply averaging the local separation distance
L − h1(r) − h2(r) over the surface of the plate.

Expanding the rhs of equation (6) in powers of hj up to second order, we find

E = EPP(L) − E′
PP(L)〈h1 + h2〉 +

E′′
PP(L)

2
〈(h1 + h2)

2〉, (7)
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where the primes denote derivatives. The first-order correction only depends on the global
displacements of the plates and, thus, is a trivial effect (this is also the case for the more
general theory discussed in the next section). Here it vanishes because of our definition for
hj . Hence, the roughness correction is of second order. Using equation (3), we find [6]

δE = E − EPP = E′′
PP(L)

2

〈
h2

1 + h2
2

〉
, (8)

Similar results, obtained from integration of the Casimir–Polder pairwise interaction,
were used for comparison with experiments [7].

According to equation (8), the roughness correction derived from the PFA depends only
on the variance of the surface profile. On the other hand, in the more general case discussed
in the next section, with arbitrary values for L/�C, the correction depends on the complete
roughness spectrum.

4. Scattering approach

In order to be more general, we follow the scattering approach [8] and consider the parallel
plates as a plane cavity modifying the vacuum fluctuations in the intracavity region. The cavity
is analysed as a composed optical network, where each component is described by a transfer
operator [9]. This allows one to derive the intracavity field fluctuation from the free-space
fluctuations propagating from outside.

Using this method, [9] obtained the following representation for the Casimir force in the
ideal plane case:

FPP = −A
∑

p

∫
d2k

(2π)2

∫ ∞

0

dω

2π
h̄kz(gp(k, ω) − 1), (9)

where p denotes field polarization, k and kz =
√

ω2/c2 − k2 are the wavevector components
along the xy-plane and the z-axis, respectively, and gp(k, ω) is the generalized Airy function
for the plane cavity. The term gp(k, ω) − 1 in this equation quantifies the boundary effect of
the cavity, modifying the vacuum fluctuations in the region between the plates. It is written
in terms of the loop function fp(k, ω) as follows (c.c. denoting the complex conjugate):
gp(k, ω) − 1 = fp(k, ω) + c.c., with

fp(k, ω) = r1(k, ω)r2(k, ω) e2ikzL

1 − r1(k, ω)r2(k, ω) e2ikzL
. (10)

Thus, the generalized Airy function is determined by the reflection coefficients r1 and r2 of
each plate (as seen from the intracavity region) and by the separation distance L.

We may write the loop function as the superposition of all propagation factors representing
a closed loop, with an integer number of round trips inside the cavity:

fp(k, ω) = r1(k, ω)r2(k, ω) e2ikzL +
[
r1(k, ω)r2(k, ω) e2ikzL

]2
+ · · · . (11)

The roughness correction of the Casimir force is similarly derived from the modification
of the Airy function induced by the roughness effect:

δF = −A
∑

p

∫
d2k

(2π)2

∫ ∞

0

dω

2π
h̄kzδgp(k, ω). (12)

The second-order correction δgp(k, ω) is written in terms of loop functions corresponding to
round trips containing non-specular reflections:

δgp(k, ω) = δf (i)
p (k, ω) + δf (ii)

p (k, ω) + c.c. (13)



Roughness correction in the Casimir effect with metallic plates 6521

Figure 3. Diagram representing a second-order loop function.

The loop function δf (i)
p (k, ω) contains two first-order (non-specular) ‘rough’ reflections at the

same plate (omitting the frequency dependence):

δf (i)
p (k) =

∑
p̄

∫
d2k̄

(2π)2

[
r1;p(k) e2ikzLR

(1)

2;pp̄(k, k̄)r1;p̄(k̄) e2ik̄zLR
(1)

2;p̄p(k̄, k) + · · · ]σ2(k̄ − k)

+ [1 ↔ 2], (14)

where R
(1)

2;p̄p(k̄, k)H2(k̄ − k) is the first-order non-specular reflection coefficient changing the
incident polarization p into p̄ and the incident wavevector k into k̄. It is calculated by taking
the Rayleigh hypothesis [10]. Whereas diffraction by the surface changes the value of k, the
frequency is conserved, since the surface is at rest. We have used equation (5) to write the
average 〈|Hj(k)|2〉 in terms of the roughness spectrum σj (k).

This expression should be read from right to left and corresponds to the diagram shown
in figure 3. The first rough reflection at plate 2 changes (k, p) into (k̄, p̄). This is followed by
a round-trip propagation containing a specular reflection at plate 1 (factor r1;p̄(k̄) e2ik̄zL), and
then by a second first-order non-specular reflection at plate 2, which changes polarization and
momentum back to their original values. To close the loop, one must also return to the initial
direction of propagation, by taking another ‘specular’ round trip. Additional diagrams are
obtained by interposing arbitrary numbers of specular round trips between the stages described
above. They are represented by the dots in equation (14), and can be added analytically as in
equations (10) and (11).

Of course, we also add the diagrams corresponding to two non-specular reflections at plate
1 (the second line in equation (14)). Note, on the other hand, that diagrams with non-specular
reflections at different plates do not contribute to the stochastic roughness correction when the
surfaces are statistically independent because of equation (3).

As usual in second-order perturbation theory, we integrate over all intermediate modes of
propagation to obtain the loop function δf (i)

p (k, ω) in equation (14).
The loop function δf (ii)

p (k, ω) can also be represented by diagrams like that discussed
above. These diagrams contain a single second-order rough reflection at one of the plates.

If we assume that the two plates have the same optical properties, we may write the energy
correction in terms of a single second-order roughness response function G(k). By combining
the previous equations and integrating δF over the separation distance, we find

δE =
∫

d2k
(2π)2

G(k)σ (k), (15)

with σ(k) = σ1(k) + σ2(k).
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Figure 4. The sensitivity ρ as a function of k for the distances L = 50 nm (solid line), L = 100 nm
(dashed-dotted line), L = 200 nm (dotted line) and L = 400 nm (dashed line).

Recovering PFA as a limiting case. If the roughness spectra are sharply peaked around k = 0,

we may approximate G(k) by G(0) in equation (15) and obtain

δE ≈ G(0)

∫
d2k

(2π)2
σ(k) = G(0)

〈
h2

1 + h2
2

〉
, (16)

in agreement with the PFA result, equation (8), provided that

G(0) = E′′
PP(L)/2. (17)

The width of σ(k) is of the order of the inverse correlation length 1/�C, whereas the typical
scale for the variation of G(k) is of the order of 1/L. Hence, the condition for the validity of
the PFA is L � �C, in agreement with the discussion of the previous section.

It is instructive to analyse equation (14) in this limit. Since σ2(k̄ − k) is peaked around
k = k̄, we may approximate k̄ by k in the coefficient R(1)

2;p̄p(k̄, k). R
(1)

2;p̄p(k, k) is the coefficient
that describes specular reflection by a plane mirror which is displaced by a small quantity h2.

In this case, the correction simply amounts to introducing the phase shift e2ikzh2 representing
the additional round-trip propagation introduced by the displacement h2, up to first order in
h2. Hence, it satisfies the condition R

(1)

2;p̄p(k, k) = 2ikzr2;p(k)δp̄,p, regardless of the model
considered for the material medium. Inserting this equation and the specular limits of the
other coefficients into the expression for G(k), we verify equation (17), showing that the PFA
result can be derived from the general expression by discarding non-specular reflections at
the plates. This is in line with the derivation of the previous section, where the surface was
assumed to be nearly flat over long distances.

We may quantify the deviation from the PFA result by calculating the sensitivity function
ρ(k) = G(k)/G(0). We take the plasma model to describe the optical properties of the metallic
plates, with a plasma wavelength λP = 136 nm (corresponding to gold). In figure 4, we plot
ρ as a function of k for different values of L. The value obtained in the scattering approach is
always larger than the PFA result, and the discrepancy increases with the roughness wavevector
k as expected, since larger values of k correspond to sharper variations of the surface profile.
Clearly, the PFA is a better approximation for shorter distances, also as expected.

At k = 0.02 nm−1 (roughness wavelength ∼300 nm) and L = 200 nm, the correction is
60% larger than the PFA result.

5. Conclusion

We have analysed in detail the meaning of the PFA in the context of roughness, showing that
it corresponds to the specular limit of the second-order correction obtained in the scattering
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approach. So far, the roughness correction in recent experiments has been analysed only by
a theoretical model equivalent to the PFA [7]. Thus, it is extremely important to investigate
its accuracy given the real experimental conditions. A definite answer can only be reached by
plugging the complete experimental roughness spectra σj (k) into equation (15).
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